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1. Introduction and conclusions

Chiral models of dynamical supersymmetry breaking with F-terms were constructed long

time ago [1]. Explicit models with supersymmetry breaking ground state are generically

relatively involved. More recently, Intriligator, Seiberg and Shih (ISS) proposed a simple,

vector-like model with long-lived, metastable supersymmetry breaking vacua [2], whereas

the ground state is supersymmetric.1 On the other hand, in the last couple of years,

convincing models of moduli stabilization in string theory were proposed, the propotype

being the KKLT scenario [5], based on the orientifolds of IIB string theory flux compacti-

fications [6]. One of the main problems of the KKLT scenario is the uplift of the vacuum

energy to zero or positive values. The original proposal of using antibranes relies essentially

on nonlinearly realized supersymmetry, whereas the latter attempts [7, 8] to uplift vacuum

energy by D-terms, based on the suggestion in [9], lead generically to very heavy (close to

the Planck mass) gravitino mass.2

Alternative uplifting using F-terms were already studied in [10 – 12]. As already

stressed in [11], a generic F-type supersymmetry breaking with a supersymmetry breaking

scale TeV ¿ ΛSUSY ¿ MPl can naturally produce the appropriate, intermediate energy

scale, for an uplift with a gravitino mass in the TeV range. Dynamical supersymmetry

breaking is certainly the best candidate to fulfill this criterion. Metastable vacua have

by definition a positive contribution to the vacuum energy which could clearly realize the

1See [3] for various extensions and string embedding of the ISS proposal and [4] for an earlier proposal.
2It would be very interesting to find explicit counter-examples to this claim.
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uplifting required in the KKLT scenario. As we will see in this letter, dynamical super-

symmetry breaking in metastable vacua of the ISS type does achieve the goal of uplifting

the KKLT vacuum energy to zero, while keeping a TeV scale gravitino mass and therefore

leading to low energy supersymmetry. We would like to emphasize, however, that the main

ingredient in realizing the uplifting is not the metastable nature of the ISS model. Indeed,

as we will briefly mention, other more traditional models [13] of dynamical supersymmetry

breaking realize the uplifting in a qualitatively similar way. We argue by explicit examples

in both cases that there are generically supersymmetric AdS minima generated by the

supergravity interactions, with however Planckian vev’s for some fields and therefore not

fully trustable in the effective supergravity description. Even by considering seriously these

AdS minima, we argue that tunneling from the Minkowski metastable vacuum to the AdS

supersymmetric one can be very suppressed.

It would be very interesting to couple the Minimal Supersymmetric Standard Model to

our present ISS-KKLT setup, to work out the low-energy phenomenology of the model and

to compare it to the existing works [14] based on the original KKLT uplifting prescription

relying on antibranes and nonlinearly realized supersymmetry.

The dynamically generated F-term uplifting method can also be combined with the

moduli stabilization in type IIA strings [15]. Indeed, D-term uplifing is not available in

type IIA strings with moduli stabilization, because of the strong constraints coming from

gauge invariance [16]. There are no such constraints in our present setup, therefore there

should be no fundamental obstacles in uplifting vacuum energy by non-supersymmetric

metastable vacua in type IIA strings with all moduli stabilized.

The structure of this note is as follows. In section 2 we combine the KKLT model of

moduli stabilization in type IIB strings with the ISS model of metastable supersymmetry

breaking vacuum. We show that in this case the uplifting of the vacuum energy is naturally

compatible with a TeV gravitino mass. We discuss supergravity corrections to the globally

supersymmetric vacuum, the possibility of a new supersymmetric minimum induced by

SUGRA interactions, the effects of gauging the color symmetry in the ISS model and the

lifetime of the metastable vacuum. In section 3 we show that qualitatively similar results

are obtained by replacing the ISS model with a more traditional model [13] of dynamical

supersymmetry breaking. In section 4 we provide some general comments about the tree-

level soft masses and under which conditions they could vanish. We then apply the general

formulæ for the specific case of the model defined in section 2 and work out some tree-level

soft terms, showing that generically tree-level soft masses are of the order of the gravitino

mass, whereas gaugino masses can be suppressed in particular cases.

2. Metastable vacua and moduli stabilization

The model is defined by

W = W1(T ) + W2(χ
i),

K = −3 ln(T + T̄ ) + |ϕ|2 + |ϕ̃|2 + |Φ|2. (2.1)

– 2 –
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In (2.1), χi denotes collectively the fields ϕa
i , ϕ̃j̄

a, Φi
j̄

of the ISS model, where i, j̄ = 1 · · ·Nf

are flavor indices and a, b = 1 · · ·N are color indices. Moreover, in (2.1)

W1(T ) = W0 + ae−bT ,

W2(χ
i) = hTrϕ̃Φϕ − hµ2TrΦ. (2.2)

Notice that the model is a straightforward combination of the ISS model of metastable

supersymmetry breaking vacua with the KKLT model of moduli stabilization. As explained

in [2], the sector ϕa
i , ϕ̃j̄

a has a perturbative description in the free magnetic range Nf > 3N .

The appropriate microscopic theory is an orientifold IIB/Ω′, with the orientifold operation

Ω′ = Ω(−1)FLI6, where (−1)FL is the left spacetime fermion number and I6 is the parity

in the six internal coordinates. The theory contains D3 (O3) branes (orientifold planes)

asked by the orientifold operation, with the D3 branes placed at singular points of the

compact space in order to reduce supersymmetry to N = 1. Typically there are also D7

(O7) branes (orientifold planes) if other orbifold operations are present. The constant

W0 is generated by 3-form closed string fluxes, as in [6], whereas the nonperturbative T -

dependent superpotential could come from gaugino condensation on D7 branes [5] or D3

brane instantons. The gauge sector responsible for the nonperturbative ISS dynamics has a

natural embedding on a stack of N D3 “color” branes, with a dynamical scale depending on

the dilaton field S, which was already stabilized by three-form fluxes. The mesonic fields Φ

are naturally interpreted as positions of a stack of Nf D7 “flavor” branes. This guarantees

that their Kähler metric is independent at lowest order on the volume Kähler modulus

T [17], as already assumed in (2.1). If the mesons had entered into the no-scale structure

of the T -modulus in (2.2), as explained in [11] the vacuum of the theory would have had a

marginally unstable direction. The quarks ϕ, ϕ̃ should come from open string in the D3-D7

sector.The Kähler potential of the (anti) quarks of the ISS model are less important for the

whole construction. The reason is that they do not contribute to SUSY breaking in the

rigid (global) limit and they play no role in the uplifting mechanism at the leading order

in the expansion that we analyze in our paper. For this reason and in order to simplify

some formulæ we take a canonical Kähler potential for them, too. Whereas a complete

string/brane construction involves many other ingredients that we don’t address at all in

the present paper, we believe that presenting our uplifting mechanism at the simplified

supergravity level is a first step towards the explicit construction of a microscopic (string)

theory. We do not attempt here a complete string construction underlying our effective

theory, for recent progress see [3]. We point out nonetheless that global string constructions

with finite internal space volume are needed in order to achieve this goal.

As transparent in (2.1), the KKLT and the ISS sectors are only coupled through

gravitational interactions. In particular, as the ISS gauge group comes from D3 branes,

the dynamical scale in the electric theory and therefore also the mass parameter µ in the

magnetic theory superpotential (2.2) depend on the dilaton S, which we assume is already

stabilized by NS-NS and RR three-form fluxes. We believe this decoupling is instrumental

in getting the uplift of the vacuum energy. Another reason for forbidding a coupling of

the dynamical supersymmetry breaking sector in the global supersymmetric limit to the

– 3 –
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T -modulus is that it is unclear how to formulate the non-abelian Seiberg duality for field-

dependent couplings.

At the global supersymmetry level and before gauging the color symmetry, the ISS

model has a global symmetry G = SU(N) × SU(Nf ) × SU(Nf ) × U(1)B × U(1)′ × U(1)R,

broken explicitly to SU(N) × SU(Nf ) × U(1)B × U(1)R by the mass parameter µ. In the

supergravity embedding (2.2), the R-symmetry U(1)R is explicitly broken. To start with,

we consider the ungauged theory, in which the SU(N) is part of the global symmetry group.

At the global supersymmetry level, the metastable ISS vacuum is

Φ0 = 0 , ϕ0 = ϕ̃T
0 =

(

µIN

0

)

, (2.3)

where IN is the N × N identity matrix and µ ¿ Λm, where Λm ≤ MPl denotes the mass

scale associated with the Landau pole for the gauge coupling in the magnetic theory. The

first question to address is the vacuum structure of the model. In order to answer this

question, we start from the supergravity scalar potential

V = eK
[

(K−1)ij̄DiWDj̄W̄ − 3|W |2
]

+
1

2
(Refa)D

2
a, (2.4)

where Refa = 1/g2
a define the gauge couplings. By using3 (2.1)–(2.2), we find

V =
eχ̄īχ

i

(T + T̄ )3

{

(T + T̄ )2

3

∣

∣

∣

∣

∂T W −
3

T + T̄
W

∣

∣

∣

∣

2

+
∑

i

∣

∣∂iW + χ̄īW
∣

∣

2
− 3|W |2

}

. (2.5)

Since µ ¿ MPl, the vev’s in the ISS model are well below the Planck scale. Then an

illuminating way of rewriting the scalar potential (2.5) is to expand it in powers of the

fields χi/MPl, in which case it reads4

V =
1

(T + T̄ )3
VISS(χi, χ̄ī) + VKKLT(T, T̄ ) +

χ̄īχ
i

M2
Pl

V1(T, T̄ )

+
1

M3
Pl

[

W2(χ
i)V2(T, T̄ ) + χi∂iW2V3(T, T̄ ) + h.c.

]

+ · · · , (2.6)

where by comparing (2.6) with (2.5) we can check that V1 ∼ m2
3/2M

2
Pl, and V2, V3 ∼

m3/2M
3
Pl, where as usual m2

3/2 = |W |2 exp(K). Notice that the contribution to the vacuum

energy from the ISS sector, in the global limit, is

〈VISS〉 = (Nf − N)h2µ4. (2.7)

Since we are interested in small (TeV scale) gravitino mass, it is clear that the first two

terms in the rhs of (2.6), VISS and VKKLT, are the leading terms. Consequently, there

should be a vacuum very close to an uplift KKLT vacuum 〈T 〉 = T0 and the ISS vacuum

3The gauge D-term contributions do not exist in the ungauged case we are discussing in this section and

will play essentially no role in the following sections.
4In most of the formulæ of this letter, MPl = 1. In some formulæ, however, we keep explicitly MPl.
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〈χi〉 = χi
0. The KKLT uplift vacuum at the zeroth order T0 is defined as the minimum of

the zeroth order potential ∂T0V0 = 0, obtained by inserting the ISS vacuum (2.3) into the

supergravity scalar potential

V0 =
1

(T + T̄ )3

[

(T + T̄ )2

3
|DT W1|

2 − 3|W1|
2 + h2(Nf − N)µ4

]

. (2.8)

In the limit bT À 1 and for zero cosmological constant, a good approximation for T0,

considered to be real in what follows, is provided by

W0 +
ab(T0 + T̄0)

3
e−bT0 = 0. (2.9)

Notice that in this case T does contribute to supersymmetry breaking5

F T ≡ e
K
2 KT T̄ DT W '

a

(T0 + T̄0)1/2
e−bT0 , (2.10)

but by an amount suppressed by a factor of 1/b(T0+T̄0) compared to the naive expectation.

The cosmological constant at the lowest order is given by

Λ = VKKLT(T0, T̄0) +
(Nf − N)h2µ4

(T0 + T̄0)3
, (2.11)

which shows that the ISS sector plays the role of an uplifting sector of the KKLT model.

In the zeroth order approximation and in the large volume limit b(T0 + T̄0) À 1, we find

that the condition of zero cosmological constant Λ = 0 implies roughly

3|W0|
2 ∼ h2(Nf − N)µ4. (2.12)

If we want to have a gravitino mass m3/2 ∼ W0/(T0 + T̄0)
3/2 in the TeV range, we need

small values of µ ∼ 10−6 − 10−7. Since µ in the model [2] has a dynamical origin, this is

natural. Moreover, the metastable vacuum of [2] has a significantly large lifetime exactly in

this limit, more precisely when ε ≡ (µ/Λm) ¿ 1. Therefore, a light (TeV range) gravitino

mass is natural in our model and compatible with the uplift of the cosmological constant.

We believe that this fact is an improvement over the D-term uplift models suggested in [9]

and worked out in [8].

Notice that supergravity corrections give tree-level masses to the pseudo-moduli fields

of the ISS model. As explained in more general terms in [2], these corrections are sublead-

ing with respect to masses arising from the one-loop Coleman-Weinberg effective potential

in the global supersymmetric limit. This can be explicitly checked starting from the super-

gravity scalar potential (2.5) and expanding in small fluctuations around the vacuum (2.3)

to the quadratic order.

5Notice that the leading order expression for W0 in (2.9) is not enough for computing F T , since the

subleading terms neglected in (2.9) are needed as well. F T can be computed directly, however, by keeping

the leading terms in the eq. ∂T V = 0.

– 5 –
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2.1 The metastable vacuum and supergravity corrections

By coupling the T field to the ISS dynamical supersymmetry breaking system, we expect

small deviations from the lowest order vacuum (2.3), (2.9). We expand

χi = χi
0 + δχi , T = T0 + δT, (2.13)

where χi
0 are provided by (2.3), with δϕ ¿ ϕ0 ( δϕ̃ ¿ ϕ̃0) and δT ¿ T0. We now turn

to the SUGRA corrections to the ISS metastable vacuum (2.13), by linearizing around the

ISS-KKLT vacuum the field eqs,

∂ϕV = ∂ϕ̃V = ∂ΦV = ∂T V = 0. (2.14)

This can be done by starting from the expansion in the fields χi in (2.6), where

V1 = VKKLT +
|W1|

2

(T + T̄ )3
,

V2 = −
1

(T + T̄ )3
[

(T + T̄ )DT W + 3W1

]

(2.15)

V3 =
W1

(T + T̄ )3
.

Notice that in the zeroth order vacuum V1 ∼ m2
3/2M

2
Pl, and V2, V3 ∼ m3/2M

3
Pl, as well as

∂T V1 ∼ m2
3/2M

2
Pl and ∂T V2, ∂T V3 ∼ m3/2M

3
Pl. In order for the linearization to be well-

defined, we need to include the Coleman-Weinberg one-loop quantum corrections to the

scalar potential discussed in [2]. The reason is that at tree-level and in our zeroth order

approximation, there are zero mass particles which, in addition to the Goldstone bosons

of the broken symmetries, contain also pseudo-moduli which get their masses at one-loop.

After including these corrections, we find at the leading order in the variations δχi, δT and

for zero cosmological constant, that

δχi ≤ O(m3/2) , δT ≤ O(
m3/2

MPl
). (2.16)

Since in our framework m3/2 ¿ µ, the condition δϕ ¿ ϕ0 is largely satisfied, showing that

the expansion (2.13) is an excellent approximation. The precise values of the supergravity

corrections (2.16) are not important for what follows. Notice that the small values for δϕ,

δΦ in (2.16) are in agreement with the arguments given in [2] stating that high energy

microscopic effects in the magnetic theory should not affect significantly the metastable

vacuum.

2.2 The SUGRA induced magnetic supersymmetric minimum

In the ISS model and in the case of ungauged SU(N) symmetry, the ISS vacuum (2.3)

is actually the true ground state. What happens in the supergravity embedding we are

proposing here ? We will show that there is a new, AdS supersymmetric ground state

generated by the SUGRA interactions. To find it, we search solutions of the type

ϕ =

(

ϕ1

0

)

, ϕ̃T =

(

ϕ̃1

0

)

, Φ =

(

Φ1 0

0 Φ2

)

, (2.17)

– 6 –
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to the SUSY preserving equations

DϕW = 0 → hϕ̃1Φ1 + ϕ1W = 0,

Dϕ̃W = 0 → hΦ1ϕ1 + ϕ̃1W = 0,

DΦW = 0 → h
(

ϕ̃i
1ϕ1,j − µ2δi

j

)

+ (Φ̄1)
i
jW = 0, i, j = 1 · · ·N

DΦW = 0 → −hµ2δn
m + (Φ̄2)

n
mW = 0, m, n = N + 1 · · ·Nf ,

DT W = 0 → abe−bTm + 3
Tm+T̄m

W = 0.

(2.18)

The eqs. (2.18) have the following solution:

ϕ1 = µ1IN , ϕ̃1 = µ2IN , with|µ1| = |µ2|,

Φ1 = (µ1µ2 − µ2)
1
2 IN , Φ2 = − µ2

(µ1µ2−µ2)
1
2
INf−N ,

(2.19)

abe−bTm − 3h
Tm+T̄m

(µ1µ2 − µ2)
1
2 = 0,

h2(µ1µ2 − µ2) − |W |2 = 0.

Since cosmological constant cancellation asks for m3/2 ∼ 〈W 〉 ∼ hµ2, where m3/2 is the

gravitino mass in the ISS-KKLT vacuum, for µi ∼ µ eq. (2.19) implies in particular Φ2 ∼

MPl: the supersymmetric minimum (2.19) depends on the UV properties of the model and

is not fully reliable in our effective field theory analysis. For µ1µ2 À µ2, all vev’s are well

below MPl, 〈W 〉 À m3/2M
2
Pl and the supersymmetric vacuum (2.19) would be within the

validity of the effective supergravity. The second possibility is however incompatible with

the condition (2.12) and for a TeV gravitino mass. Therefore we recover the conclusion

that Φ2 ∼ MPl.

Notice that the supersymmetric vacuum (2.19) survives the gauging of the SU(N)

symmetry. Indeed, the SU(N) D-flatness conditions are satisfied, since |ϕ1|
2 = |ϕ2|

2 and

[Φ,Φ] = 0 in (2.19).

2.3 Gauging the model: infrared description

In the ISS model, the SU(N) symmetry is gauged and corresponds to the gauge group

of the magnetic theory. In the electric description, the ISS model is the supersymmetric

QCD with Nc colors and Nc < Nf < 3Nc/2 quark flavors Q, Q̃ such that in the magnetic

description with the gauge group SU(Nf − Nc), the number of flavors is large Nf > 3N ,

where the magnetic theory is in the infrared-free phase. In this case the perturbative

magnetic description, around the origin in field space, is reliable. The electric theory has

a dynamical scale Λ and a mass term for the quarks W = mj̄
iQ

iQ̃j̄. There are Nc vacua

described by

M i
j̄ = (

1

m
)ij̄(det m)

1
Nc Λ

3Nc−Nf
Nc . (2.20)

The perturbative treatment in the magnetic description translates into the constraint ma ¿

Λ, where a denotes here the number of light mass eigenvalues, which has to be equal or

larger to Nf + 1 in order for the metastable vacua to exist. One of the open questions

for the ISS model is a dynamical explanation for the constraint ma ¿ Λ. We believe

– 7 –
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that a simple possibility is the following. At high energy there is an additional abelian

“anomalous” symmetry U(1)X , with mixed anomalies U(1)X SU(Nc)
2 cancelled by the

Green-Schwarz mechanism involving an axionic field aX . This will render the gauge vector

VX massive and stabilize the complex modulus field containing the axion aX . There will

be an induced Fayet-Iliopoulos term, which in explicit string models is always cancelled

by the vev of a scalar field 〈N〉 ¿ MPl. Mixed anomalies mean that the sum of the

quark charges XQ + XQ̄ is not zero and therefore the mass operator mj̄
iQ

iQ̃j̄ is not gauge

invariant. In generic models, the charge XN is oppposite compared to XQ + XQ̄. We

normalize XN = −1 in what follows. Then the superpotential term yj̄
i (N/MPl)

XQ+XQ̄QiQ̃j̄

is perturbatively allowed. Supersymmetry could be broken in the process [21], but it can

also stay unbroken. In this last case, at energy scales well below the mass of the gauge

boson AX , the net effect of all this is to generate an effective mass term for the quarks of

the electric theory m ∼ (〈N〉/MPl)
XQ+XQ̄ . For large enough quark charges and/or small

enough vev 〈N〉, the induced mass m can be very small.

Denoting by Λm the Landau pole of the magnetic theory, according to ISS, for arbitrary

vev’s of Φ the quark flavors become massive and can be integrated out. By doing this and

by coupling the resulting low-energy system to the KKLT model, we get a lagrangian

described by

W = W0 + ae−bT + N

(

hNf det Φ

Λ
Nf−3N
m

)1/N

− hµ2TrΦ,

K = −3 ln(T + T̄ ) + Φ̄Φ. (2.21)

Similarly to the global supersymmetry analysis of ISS [2], this action has Nf − N super-

symmetric vacua, which in the global limit are given by

〈hΦ〉 = Λmε2N/(Nf−N)INf
= µ

1

ε(Nf−3N)/(Nf−N)
INf

, (2.22)

where ε ≡ µ/Λm. The vacuum in the T -direction is simpler to describe by replacing the

vev’s (2.22) in the superpotential (2.21). By doing this, we get an effective superpotential

Weff = W0 −
(Nf − N)µ3

ε(Nf−3N)/(Nf−N)
+ ae−bT . (2.23)

Since W0 < 0 in the KKLT model, the effect of the supersymmetric Φ vev’s is to increase the

absolute value of the (negative) constant in the superpotential. The values of the minimum

for T and the corresponding negative cosmological constant are given approximately by

abe−bTs + 3
Ts+T̄s

(

W0 −
(Nf−N)µ3

ε
(Nf−3N)/(Nf −N)

)

' 0,

V0 ' − 3
(Ts+T̄s)3

∣

∣

∣

∣

W0 −
(Nf−N)µ3

ε
(Nf−3N)/(Nf −N)

∣

∣

∣

∣

2

. (2.24)

The supersymmetric ISS vacuum is therefore AdS.

Notice that for W0 À µ3/ε(Nf−3N)/(Nf−N), we get Ts ∼ T0, with T0 defined in (2.9),

since in this case W ' W0. If W0 ¿ µ3/ε(Nf−3N)/(Nf−N), then Ts < T0.

– 8 –
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2.4 Lifetime of the metastable vacuum

The model we discussed in this paper has one metastable vacuum and two type of AdS

supersymmetric minima. The metastable vacuum will tunnel to the supersymmetric AdS

minimum (2.22)–(2.24). The purpose of this section is to provide a qualitative estimate

of the lifetime of the metastable minimum, following [18, 19]. The bounce action is ex-

pected to come from the path in field space of minimum potential barrier between the

metastable supersymmetry breaking vacuum and the supersymmetric vacua. Along this

path, the bounce action cannot be computed analytically. For a triangular idealized ap-

proximation [19], the bounce action Sb is qualitatively

Sb ∼
(∆χ)4

∆V
, (2.25)

where ∆V is the (minimum) barrier along the bounce and ∆χ is the variation of the relevant

field. For the tunneling between the metastable ISS vacuum (2.3) and the supersymmetric

one (2.22) after gauging SU(N), there are two cases. If µ ¿ ε(Nf−3N)/(Nf−N)MPl, we get

h∆Φ ' µ
1

ε(Nf−3N)/(Nf−N)
, ∆V ∼

3

(Ts + T̄s)3
|W0|

2. (2.26)

Then, by using the condition (2.12) for a zero vacuum energy in the metastable vacuum,

we get

Sb ∼
(Ts + T̄s)

3

ε4(Nf−3N)/(Nf−N)
À 1, (2.27)

which increases the lifetime of the metastable vacuum compared to the similar ISS analysis.

The reason is that the energy difference between the metastable and the AdS supersym-

metric minimum is decreased by the factor 1/(Ts + T̄s)
3, resulting in an increase in the

bounce action Sb. In the case where µ À ε(Nf−3N)/(Nf−N)MPl, the vacuum energy of the

supersymmetric vacuum (2.24) and consequently ∆V change. The bounce action in this

case is

Sb ∼
M2

Pl

µ2

(Ts + T̄s)
3

ε2(Nf−3N)/(Nf−N)
À 1. (2.28)

The metastable minimum could also tunnel to the supersymmetric minimum (2.19). Even

by taking seriously the effective theory analysis in this case, we notice that the AdS super-

symmetric minimum (2.19) is far away in the Φ field space from the ISS-KKLT metastable

vacuum (2.3), (2.9). The tunneling probability to go to the AdS vacuum (2.19) is highly

suppressed and irrelevant for all practical purposes.

3. Uplifting with supersymmetry breaking on the quantum moduli space

As mentioned in the introduction, the important ingredient from the F-term dynamical

supersymmetry breaking sector is the intermediate scale for the resulting (positive) contri-

bution to the vacuum energy and not the metastable nature of the vacuum. We discuss now

a more conventional non-perturbative hidden sector which, in the global supersymmetry

limit, has a non-supersymmetric ground state [13]. Since most of the analysis parallels that
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already done for the ISS model, our discussion will be very brief. We consider a SQCD

model with Nc = Nf = 2 colors and flavors. The effective action which puts together the

KKLT moduli stabilization sector and the supersymmetry breaking sector is

W = W0 + ae−bT + λSijMij + X(PfM − Λ4
2),

K = −3 ln(T + T̄ ) + Tr(
1

Λ2
2

|M |2 + |S|2), (3.1)

where PfM = εijklMijMkl, Λ2 is the dynamical scale of the theory, Mij = Qa
i Q

a
j are

the mesons built up from the quarks Qa
i with color indices a = 1, 2 and flavor indices

i, j = 1, 2, 3, 4, whereas Sij are gauge singlets. Both fields are antisymmetric in the flavor

indices. In (3.1), X is a lagrange multiplier which enforces the eq. describing the quantum

deformed moduli space PfM = Λ4
2, whereas the factor of (1/Λ2

2) in the Kähler potential of

the mesons is present since mesons have mass dimension two and have a dynamical origin.

The supergravity scalar potential resulting from (3.1) is

V =
eTr((|M |2/Λ2

2)+|S|2)

(T + T̄ )3







(T + T̄ )2

3

∣

∣

∣

∣

∂T W −
3

T + T̄
W

∣

∣

∣

∣

2

+
∑

ij

|λMij + S̄ijW |2

+
∑

ij

∣

∣

∣

∣

λSij + 2XεijklMkl +
M̄ ij

Λ2
2

W

∣

∣

∣

∣

2

+ |PfM − Λ4
2|

2 − 3|W |2







. (3.2)

In the global limit, the strongly coupled sector breaks supersymmetry, since there is no

solution to the supersymmetry eqs. FX = FS = 0. As explained in [13], the strongly

coupled sector produces a contribution to the vacuum energy of order

V0 ∼ λ2Λ4
2. (3.3)

Even if at the global supersymmetric level the ground state breaks supersymmetry, sim-

ilarly to the ISS model discussed in section 2.2, at the supergravity level we do find a

supersymmetric AdS minimum. Indeed, by inserting the maximally SO(5) symmetric

ansatz

〈M〉 =

(

iσ2 0

0 iσ2

)

Λ2
2, , 〈S〉 = c

(

iσ2 0

0 iσ2

)

Λ2
2, (3.4)

into the supersymmetry conditions DSW = DMW = DXW = DT W = 0, we find

λ + cW = 0,

λc + 2X +
W

Λ2
2

= 0, (3.5)

abe−bT0 +
3

T0 + T̄0

(

W0 + ae−bT0 + 4λcΛ4
2

)

= 0.

If these conditions have a solution, the original supersymmetry breaking ground state

becomes metastable. The condition for the uplifting of the vacuum energy in the metastable

vacuum requires then W0 ∼ λΛ2
2. The last eq. in (3.6) leads then, for bT0 À 1, to
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W ∼ W0 in a first approximation, whereas T0 is given again by (2.9). A TeV value for the

gravitino mass asks therefore for Λ2
2 ∼ m3/2MPl ∼ (1011GeV)2. Combining the first two

eqs. in (3.6), we then find c ∼ −λ/W0 and therefore 〈S〉 ∼ MPl. We find, analogously to

section 2.2, Planckian values for the supersymmetric AdS vacuum, which means that the

supersymmetry preserving vacuum is actually beyond the regime of validity of the effective

lagrangian description. In contrast to section 2.2, however, the AdS vacuum energy itself

is Planckian here VAdS ∼ λ2M4
Pl.

By taking seriously this supersymmetric solution, the tunneling from the non-

supersymmetric metastable vacuum proceed in the S-field direction in field space. Since

∆S ∼ MPl, whereas ∆V = |VAdS| ∼ λ2M4
Pl, we find for the bounce action Sb ∼ (1/λ2).

The tunneling probability exp(−Sb) is therefore suppressed only in the λ ¿ 1 limit. This

condition is the analog of the condition m ¿ Λ in the electric version of the ISS model, i.e.

the quarks must have masses much smaller than the dynamical scale of the electric theory.

4. Soft terms and mass scales

4.1 General tree-level formulæ

The relevant couplings for our present discussion are the following terms in the Kähler

potential and the superpotential arising from the perturbative expansion in the matter

fields M I

K → K +
[

(T + T̄ )nIZIJ̄ + · · ·
]

M IM̄ J̄ + · · · ≡ K + KIJ̄M IM̄ J̄ ,

W → W +
1

6
WIJKM IMJMK , (4.1)

where · · · denote couplings to other (hidden-sector, messengers in gauge mediation models,

etc) fields. In a manifestly supersymmetric approach, with both F and D-term contribu-

tions, the condition of zero cosmological constant is

Kαβ̄FαF β̄ +
∑

a

(g2
a/2)D2

a = 3m2
3/2M

2
Pl, (4.2)

where α, β̄ refer to fields contributing to supersymmetry breaking and a is an index for

anomalous U(1) gauge factors. Then the most general formulæ for soft terms of matter

fields6 M I (F I = 0), are given by [7] (see also [22] for the heterotic strings case)

m2
IJ̄ = m2

3/2KIJ̄ − Fα F β̄Rαβ̄IJ̄ −
∑

a

g2
aDa(

1

2
KIJ̄ − ∂I∂J̄)Da,

AIJK = m2
3/2 (3∇I∇JGK + Gα∇I∇J∇KGα) − g2

aDa(
Da

2
∇i∇jGk −∇i∇j∇kDa),

Ma
1/2 =

1

2
(Refa)

−1m3/2G
α∂αfa, (4.3)

6We don’t write the analytic bilinear soft terms, since their discussion depends on the origin of the

corresponding (µ-like) term in the superpotential.
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where G = K+ln |W |2, Gα = ∂αG, ∇IGJ = GIJ−ΓK
IJGK , etc., where Rαβ̄IJ̄ = ∂α∂β̄KIJ̄−

ΓM
αIKMN̄ΓN̄

β̄J̄
is the Riemann tensor of the Kähler manifold and ΓM

αI = KMN̄∂αKN̄I are

the Christoffel symbols. Moreover,

Da = Xa
I M I∂IK −

ηα
a

2
∂αK. (4.4)

In (4.4), Xa
I denote U(1)a charges of charged fields M I , and ηα

a are defined by the nonlinear

gauge transformations of the moduli fields under (super-)gauge fields transformations

Va → Va + Λa + Λ̄a , Tα → Tα + ηα
a Λa. (4.5)

By using (4.4), we can also write the scalar masses in (4.3) as

m2
IJ̄ = m2

3/2KIJ̄ − FαF β̄Rαβ̄IJ̄ −
∑

a

g2
aDa(

1

2
Da − Xa

I − vlX
a
l ∂l +

ηα
a

2
∂α)KIJ̄ , (4.6)

where vl are vev’s of charged scalar fields zl with charge Xa
l . An interesting question is: in

which simple cases do the tree-level contributions of order m3/2 in (4.6) cancel each other ?

This question is particularly relevant in order to identify (classes of) models in which loop

contributions and in particular the anomaly-mediated contributions [24] are important.

From a 4d point of view, we are aware of three simple cases:

i) The well-known case of no-scale models [23] , with KT T̄ |F
T |2 = 3m2

3/2M
2
Pl, Da = 0,

with matter fields having modular weights nI = −1 in (4.1), when |F T |2RT T̄ IJ̄ =

m2
3/2KIJ̄ . This generalizes easily to the case of several Kähler moduli Tα. Starting

from the effective lagrangian

K = −
∑

α

pα ln(Tα + T̄α) +
∏

α

(Tα + T̄α)n
α
I |M I |2 + · · · , (4.7)

the no-scale structure is defined by the condition that the superpotential W is inde-

pendent of Tα and the (semi-)positivity of the scalar potential. Zero cosmological

constant then implies

KαKα ≡ Kαβ̄KαK β̄ = 3 →
∑

α

pα = 3. (4.8)

The condition of having tree-level zero soft scalar masses and A-terms for matter

fields M I is then
∑

α

nα
I = −1. (4.9)

ii) When the following conditions are simultaneously satisfied:

- D-term contributions are much larger7 than the F-terms and cancel the cosmo-

logical constant
∑

a(g
2
a/2)D

2
a ' 3m2

3/2.

7We should keep in mind, however, that in supergravity with 〈W 〉 6= 0, there is no pure D-breaking.

This case assumes therefore Da À F α, but F-terms have to exist.
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- there are no (large) vev’s of charged scalar fields vl = 0.

- the matter fields are neutral under the U(1)’s symmetries and come from the

D3 brane sector (or, more generally nI = −1).

Indeed, in this case by using the Kähler potential

K = −3 ln(T + T̄ ) + (T + T̄ )−1|M I |2 + · · · , (4.10)

then it can be easily checked that the D-term contributions precisely cancel the other

terms in the soft terms in (4.3). The generalization of this D-dominated supersym-

metry breaking case to the case of several moduli Tα is more involved and will not

be discussed here.

iii) A simple way to obtain tree-level zero soft masses is by geometric sequestering [24],

i.e separating in the internal space the source of supersymmetry breaking from the

matter fields. From a 4d viewpoint, the vanishing of the tree-level soft terms appear

as non-trivial cancellations in the general formula (4.3). However this cancellation

is protected from quantum corrections by the geometric separation of the source

of supersymmetry breaking. A typical example, obtained by assuming that moduli

fields (in particular the modulus T ) were stabilized in a supersymmetric way, is

that of a matter field M and a hidden sector field φh, which is the only source of

supersymmetry breaking and of cancellation of the cosmological constant GhGh = 3.

The 4d supergravity action is

K = −3 ln(1 −
|M |2

3
−

|φh|
2

3
),

W = Wv(M) + Wh(φh). (4.11)

It is also possible that a matter-like field C with couplings to the observable matter

saturates the vacuum energy KCC̄ |F
C |2 = 3m2

3/2M
2
Pl and by fine-tuning provides the can-

cellation of the tree-level soft scalar mass, see e.g. [12]. When neither of these cases occur,

other manifestly supersymmetric uplifting mechanism are expected to lead to soft scalar

masses of the order of the gravitino mass m2
IJ̄

∼ m2
3/2.

4.2 Soft terms with dynamical F-term uplifting

A particularly important question is the magnitude of the soft terms in the visible sector

in the present setup. In order to answer this question, we first estimate the contribution

to supersymmetry breaking from the various fields. By using the results of section 2, we

find in the leading order

Fϕ ≡ eK/2Kϕϕ̄DϕW ' eK/2Kϕϕ̄(ϕ̄0W + δΦ∂Φ∂ϕW2) ' 0,

F ϕ̃ ' 0,

FΦ = eK/2

(

0 0

0 −hµ2INf−N

)

,

F T '
a

(T0 + T̄0)1/2
e−bT0 ' −

3

b
m3/2. (4.12)
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Notice that the main contribution to supersymmetry breaking comes from the magnetic

mesonic fields Φ, which are the main responsible for the uplift of the vacuum energy

Tr(|FΦ|2) ' 3m2
3/2. (4.13)

The transmission of supersymmetry breaking in the observable sector depends on the cou-

plings of the observable fields M I to the SUSY breaking fields Φ, T . The relevant couplings

for our present discussion are the following terms in the Kähler metric of the matter fields

M I

KIJ̄ = (T + T̄ )nI ZIJ̄ + Tr(|Φ|2)Z ′
IJ̄ , (4.14)

where the form of the Φ coupling in the Kähler metric is dictated by the diagonal SU(Nf )

flavor symmetry left unbroken by the mass parameter µ in the ISS lagrangian. The Yukawa

couplings WIJK could also depend on T and Φ.

Then from (4.3) with no D-term contributions Da = 0, we find that the F T contribution

is subleading by a factor 1/b2(T + T̄ )2 with respect to the other contributions. This has the

nice feature that the flavor-dependent F T contribution to scalar soft masses are subleading.

The result for the (canonically normalized scalars) soft masses, at the leading order, is then

given by

m2
IJ̄ = m2

3/2δIJ̄ +
h2(Nf − N)µ4

(T + T̄ )3
(K−1Z ′)IJ̄

' m2
3/2

(

δIJ̄ + 3(K−1Z ′)IJ̄

)

. (4.15)

If the coupling to the mesonic fields Φ is small, i.e the coefficients Z ′
IJ̄

are suppressed, soft

scalar masses in the observable (MSSM) sector are universal and are similar with the ones

obtained in the “dilaton-dominated” scenario in the past. It would be very interesting to

find physical reasons of why Z ′
IJ̄

are small. The geometrical sequestering cannot be invoked

in this case since the matter fields M and the mesons Φ do not fit into the structure (4.11).

If the coeff. Z ′
IJ̄

are of order one, the two terms in (4.15) are of the same order and the

flavor problem of gravity mediation is back.

A similar conclusion holds for the other possible source of flavor violation, the A-terms.

If the couplings of the mesons to the matter fields are small, we get at the leading order,

for the canonically normalized scalars

AIJL ' 3m3/2wIJL, (4.16)

where wIJL are the low-energy Yukawa couplings for the matter fields, related to the

corresponding SUGRA couplings WIJL = ∇I∇J∇LW by

wIJL = eK/2(K−1/2)I
′

I (K−1/2)J
′

J (K−1/2)L
′

L WI′J ′L′ . (4.17)

Since A-terms are proportional to the Yukawa couplings, there are no flavor violations in

this case.

Gaugino masses in the observable sector are determined by the gauge kinetic functions

which in our case have generically the form

fa = f (0)
a + αaT + βa(TrΦ), (4.18)
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where f
(0)
a are provided by other moduli fields, stabilized in a supersymmetric manner. The

form of coupling to the mesons in (4.18) is fixed by the diagonal SU(Nf ) flavor symmetry

left unbroken by the mass parameter µ, whereas αa are numbers of order one.8 The gaugino

masses

Ma = αaF
T + βa(TrFΦ) (4.19)

are of the order of the gravitino mass if βa are of order one, whereas they are suppressed

by the factor 1/b(T + T̄ ) if βa are small. In this second case, the anomaly-mediated

contributions [24, 25] are comparable to the tree-level ones. To conclude, we do not find

a suppression of all the soft terms in the observable sector with respect to the gravitino

mass. Therefore our results point towards a gravity-mediation type of supersymmetry

breaking in the hidden sector, which in the case of small couplings of matter to hidden

sector mesons are very similar to the dilaton-domination scenario and are therefore flavor

blind at tree-level.9

We would like to briefly compare these results to the ones obtained in [14] by using the

original KKLT uplifting mechanism with D3 antibranes.10 By using a nonlinear supergrav-

ity approach, [14] found a (moderate) hierarchy m3/2 ∼ 4π2msoft. Let us try to understand

better the difference with our results. As we discussed in the previous section, there are

three ways of suppressing the tree-level soft masses for matter fields. The first is no-scale

type models. The KKLT-type models are not of this type, since the F T contribution is

small. The second case is the dominant D-term breaking. This is probably the manifestly

supersymmetric case which should correspond in the low energy limit to the analysis done

in [14]. Knowing that pure D-term supersymmetry breaking does not exist, it could be

difficult to realize a model along these lines. It is however very interesting to investigate

this possibility in more detail.

We believe that a more detailed phenomenological analysis of the possible manifestly

supersymmetric uplifting mechanisms deserves further investigation.
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